2.3 Set Operations

Union of sets A and B.

A U B = { x : x is an element of A or x is an element of B }

A = { 1, 3, 6, 7 } B = { 2, 3, 5, 6 } A U B = Intersection of sets A and B.

 $A \cap B = \{ x : x \text{ is an element of } A \text{ and } x \text{ is an element of } B \}$

$$A = \{ 1, 3, 6, 7 \}$$
$$B = \{ 2, 3, 5, 6 \}$$
$$A \cap B =$$

Complement of set A.

A' = { x : x is <u>not</u> an element of A }

U = { 1, 2, 3, 4, 5, 6, 7, 8 } (Universe) B = { 1, 3, 6, 7 }

A' =

Set difference of sets A and B.

B – A= { x : x is an element of B and x is <u>not</u> an element of A } "B take away A"

$$A = \{ 1, 3, 6, 7 \}$$

B = { 2, 3, 5, 6 }
A - B =

Order of Operations

- () parenthesis always done first.
 - ' set complement next.
- U, ∩, union, intersection, difference last

Find A U B'

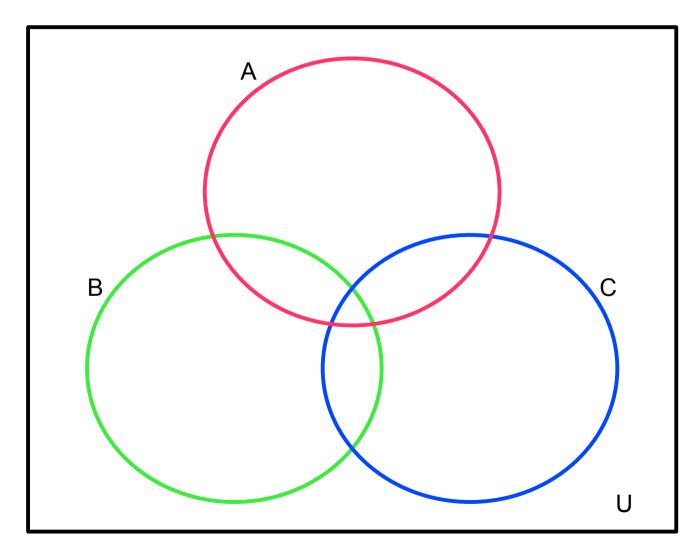
Find $(A \cap B)'$

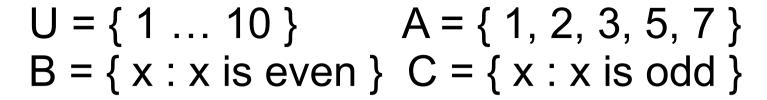
Find A' - B

Find (A U B) \cap B

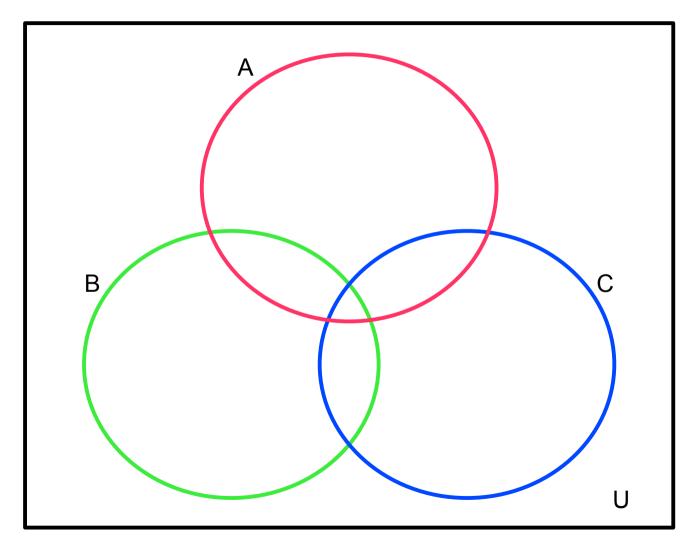
Find A' – (A \cap B)

Order of Set Operations


• Example: Let $U = \{1, 2, 3, ..., 10\}, E \{x : x \text{ is ev} \in n\},\$ $B = \{1, 3, 4, 5, 8\}, \text{ and } A \{1, 2, 4, 7, 8\}.=$ Find $(A \cup B)' \cap (E' \cup A).$


1.
$$(A \cup B) = \{1, 2, 3, 4, 5, 7, 8\}$$

2. $(A \cup B)' = \{6, 9, 10\}$
3. $E' = \{1, 3, 5, 7, 9\}$
4. $(E' \cup A) = \{1, 2, 3, 4, 5, 7, 8, 9\}$
5. $(A \cup B)' \cap (E' \cup A) = \{9\}$


DEMORGAN'S LAWS FOR SET THEORY

If *A* and *B* are sets, then $(A \cup B)' = A' \cap B'$ and $(A \cap B)' = A' \cup B'$.

Three sets can also be represented in a Venn Diagram.

Find (A U B) - C'

Order of Set Operations

• Intersection distributes over union.

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

© 2010 Pearson Education, Inc. All rights reserved.

Section 2.3, Slide 13

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

This same phenominon occurs in the distributive property in the integers.

$$R \times (S + T) = (R \times S) + (R \times T)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Union also distributes over intersection.

Order of Set Operations

THE CARDINAL NUMBER OF THE UNION OF TWO SETS

If A and B are sets, then $n(A \cup B) = n(A) + n(B) - n(A \cap B)$.

We must subtract $n(A \cap B)$ so we do not count these elements twice.

© 2010 Pearson Education, Inc. All rights reserved.

Section 2.3, Slide 16